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Integral equations are obtained for problems of the elastic equilibrium of a spatial wedge, weakened by 

a planar strip cut located in the median half-plane of the wedge, for different boundary conditions on 

the faces of the wedge. A known normal load, which is symmetrical about the plane of the cut is applied 

to the edges of the cut. In the case when the cut reaches the edge of the wedge, the solution of the 

problem using the method of paired integral equations reduces to Fredholm integral equations of the 

second kind with symmetric kernels. The possibility of the cleavage of the wedge along an edge [l] is 

shown. A simple formula which is convenient for applications is found for the normal stress intensity 

factor at one end of the cut. Calculations for various wedge aperture angles are carried out using this 

formula. 

The problem of a cut in the form of a strip in a homogeneous infinite space or an infinite space 
which is deformed according to a power law has previously been studied [2]. Problems of 
cracks in a planar wedge have been treated using a Mellin integral transformation [l, 31. A 
Fourier-Kontorovich-Lebedev integral transformation in the complex plane has been employ- 
ed in the case of a spatial wedge [4-71. 

1. Consider a three-dimensional elastic wedge with an aperture angle 2a (Oca s 7~) in a 
cylindrical system of coordinates r, cp, z with the z-axis directed along an edge of the wedge. 
There is a strip-shaped cut in the median half-plane of the wedge cp = 0 which occupies a 
domain fi : (0 s r s b, I z I c -). The cut exists in an expanded state under the action of a load 
o, = -q(r, z), ‘p= +O, (r, z) EQ which is periodic with respect to z with a period of 21. It is 
assumed that the faces of the wedge are either free from stresses (problem (a)), lie in a 
frictionless state on a rigid base (a slipping fixing, problem (b)) or are rigidly clamped 
(problem (c)). It is required to find the shape of the expansion of the cut U? = f(r, z) cp = +O, (r, 
z) ES& whereupon it is possible to determine the normal stress intensity factor. We shall 
subsequently study only the domain 0 G cp c CX, as the problem is symmetrical with respect to cp. 
The boundary conditions in this domain can be written in the form 

q=o: r IQ =%z =o; UT=0 (T,Z)E R a,=-q(r,z) (T,Z)E l-2 

cp = cc: (a) bg = z_ = rW = 0, (b) us = 7’rcp = ‘5Vz = 0, (c) U, = u,+, = uz = 0 
(1.1) 

For simplicity, we shall assume that the function q(r, z) is even with respect to z and can be 
represented in terms of a Fourier series. It then suffices to solve the problem for the case 

q(r,z)=q(r)cospz, p=lmll (1.2) 
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and to construct a superposition of the solutions obtained for different values of n 2 1 as well 
as of the solution of the problem of the planar deformation of a wedge (n = 0) [3]. 

On finding the three harmonic functions in the Papkovich-Neuber representation in the 
form of Fourier-Kontorovich-Lebedev integrals in the complex plane 14, 51, we reduce the 
problem to an integral equation in f(r) 

(f(r, z) = f<r>co$z) 

#(r,x) = - 2 9 
ushnu 

n2rx o ch(nul2) 
~~~(~~)[Z-(I-~V)A~] ~c~~~~2)~i~(~) 

m 

+ch’c”jj -- shrcyg,(y)shtxs/2)WOts)g(s) 
2 o o (ch ICY + ch n;u)(ch xy + ch RS) 

dsdy + 

+(l - 2v)ch y $$ (c~~~~~~~s:~~h~~+~~~~~ BY(g(s))dfdy 

~(~,~)=2ch~sh~~(~)~ sh~g~(r)df 

o (ch m + ch m)(ch m + ch KS) 

&‘Ig(s)I = R;o(l - 2vY(A; )” 0 C’{gW 

C’(g(s)) = 4chz II *- shnyg, (y)sh(m /2)w,(s)g(S) dSdy + 7 
2 o. (chny+chIcr)(chxy+chm) 

b(t 
I 
sIg(S) WOb) ds 

0 w,(s) 
wO,~(~)=(cy+(~)+w_(s))/2, W*(S)=-W+(S)W_(S)fW;(S) 

g,,*(t)=(g+(t)fg_(t))/2 

W*(s)=lt 
chmTcosa 

shccrfssina’ 
g*(t) = 

(b)m=2, (c)m=3 

A;,&(@} = TL2.&w)g(4d~ 
0 

b,3(u,s) = 2chTshy W2,&) 7 * w2.3 O)dt 

o (ch ?t + ch mf(ch xf + ch XS) 

w,(s) = 
Ksh2as-ssin2a 

Kch20LS+S2(1-cos2Cl)+(l+K2)/2’ 
Ic=3-4v 

g30)=- 

(1.3) 

(1.4) 

(1.5) 

43.6) 

-f~(t)[2f~(t)+If22(t)l}/f5(t)-2(1-v)sina{fi(t)(sin3a-sinach2at)- 

-f4(t)cosash2at}/f’(t) 

fi(t)=~sh2afcos2a--tsin2a, f,(t)=cos2a+sin220:-ch2at 

fq(t)=sin2athat(l+cos2a), f4(t)=sin2a(Kch2at-1) 

fs(f)=[fr2(f>+f~(t)](sh2~+cos2 2a) 
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Here C is the shear modulus, v is Poisson’s ratio and I is the identity operator, It follows 
from the proposition, which was proved in [SJ for an integral operator A,” that the operator 
series Bt in formula (1.5) only converges in the space of continuous functions C,(O, -) which 
are bounded on the semiaxis if v > 0.053 for any angle 01. 

Lemma 1. The kernel of integral equation (1.3) satisfies the symmetry condition: K(r, 
x) = K(x, r). 

Lemma 1 is obvious in the case of problems (b) and (c) since the function K(r, X) when 
m = 2, 3, can be represented in the form 

K(r,~)=_2?shmtKh(pr)Ki,(BX) 
u2 

7c2 0 
--(I-2v)g,(u) du 
rxw, (u) I 

In the case of problem (a), the validity of Lemma 1 is established by an analysis of each term 
of the Neumann series which occurs in formula (1.5), permutation of the integrals and a change 
of the variabfes of integration. 

In the case of problem (b), we find, when a = x, that [S, pp. 786,984,986] 

The kernel of (1.7) corresponds to a problem of a strip-shaped cut in an infinite space [2]. 
When a= n/2 in the case of problem (b), on calculating the quadratures as in (1.7), we 

obtain the kernel of integral equation (1.3) in the form 

W3) 

which corresponds to the symmetric problem of two identical strip-shaped cuts in infinite 
space, 

In the case of a problem concerning a strip-shaped cut perpendicular to a boundary of a 
stress-free half-space (problem (a) when a = 7c/2), we obtain a kernel in the form (the series in 
powers of (1 - 2v) is truncated) 
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Formulae (1.9) can be obtained from formulae (1.14) in [9]. 
When p +O, the integral equations (1.3) reduce to the integral equations of the corres- 

ponding planar problems for a wedge [3]. 
We also note that the solution of Eq. (1.3) must obey the condition f(b) = 0. 

2. The following theorem plays an important role in the derivation and solution of the 
integral equations (1.3)-(1.6). 

Theorem. The operators Z-(1- 2v)A; : C,(O, -) + C,(O, -) (m= 1, 2, 3), defined by 
formulae (lS)-(1.6), have inverses which are equal to 

shsrrg,(t)dr 

o (ch zt + ch zU)(ch ret + ch scs) 

when the inequality 

(2.1) 

is satisfied. 
The proof of this theorem, which is obvious when m= 2, 3 (the inversion of a Neumann 

series) and in the case when m = 1 (the inversion of a combination of two Neumann series) is 
based on the solution of the following auxiliary problem using an integral Fourier- 
Kontorovich-Lebedev transformation (6(x) is a delta-function) 

cp=a/2: zw =zqz =O; ug =6(r-xRi(lzI-y) 
(2.3) 

as well as on the well-known connection (see [lo], for example) between contact problems and 
problems of the crack theory. Here, we note that an operator Bf’ of the form of (2.1) occurs in 
the kernel of integral equation (2.1) of the contact problem (a) from [7]. 

Investigations [S-7] have shown that inequality (2.2) is satisfied for angles a= m/12 
(n = 1, 2, . . . ) 12) as a rule, for all values of v which are encountered in practice. 

To solve integral equation (1.3), we employ the method of paired [dual] integral equations 
[ll]. Let us introduce the function 

Then, by the theorem formulated above, we can express the function from (2.4) as 

Let us write a paired integral equation which is equivalent to Eq. (1.3) 

(2.4) 

$I?(4 OS r< b 
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We will seek the solution of Eq. (2.6) in the form 

QW = N(u) + M(u) 

N(u) = ~shnuW,(.)Jq(l)K,,(prfdr 
0 

M(u)=- 3 

0 

3/2 

shxuW,(u)9j~(t)ReKX+,(pr)dt 

b 
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(2.6) 

On introducing the representation (2.7) into (2.6), we satisfy the first equation of (2.6) 
identically [ll]. The second equation of (2.6) is transformed to a Fredholm integral equation of 
the second kind in the function cp(t) 

cp(r)+;cp(s)R(s,t)ds = F(t), b G t < 00 (2.8) 
b 

R(s, f) =+Ku[(Wm(u)- cth~u)Re~~+i~(~~)+ 

+ we 
chfxu I2) 

l3: ch~ReKx+jy(&) (2.9) 

Lemma 2. The kernel of integral equation (2.8) of the form of (2.9) is symmetrical, that is, 
R(s, t) = R(t, s). 

This lemma, the proof of which is analogous to the proof of Lemma 1, enables one to use the 
Hilbert-Schmidt theory [12] to investigate Eq. (2.8). 

It can be shown that the condition f(b) = 0 is satisfied in the case of a function f(x) of the 
form of (2.5) and (2.7). 

It follows from formulae (2.5) and (2.7) and the fact that &(O) = &l(u) that the behaviour 
of the function f(x) on the edge of a wedge (X + 0) depends on the value of the limit limsh 
nuw,(u) = A (u + 0, m = 1, 2,3). In the case of problem (b) when a = 7~: (an infinite space) and 
problem (c) for any a, we have that A = f(0) = 0. In the remaining cases A # 0, f(0) # 0, that is, 
there is a cleavage of the elastic wedge along an edge. 

The method of mechanical quadratures using the Gaussian quadrature formula is effective 
in the numerical solution of Eq. (2.8). Tables of the functions Kl,a+iU(~) which are available [13] 
facilitate its use. When the functions R(s, t) and F(t) are calculated using formulae (2.9) instead 
of summation of the Neumann series for B; it is more convenient to solve the corresponding 
Fredholm integral equations of the second kind by the method of mechanical quadratures. 

The problem has an exact solution in case (a) for a = x when X (s, t) = 0. 
The normal stress intensity factor when r =b referred to co+ can be found using the 

formula 

K, =-r!~o [&--q(r)] (2.10) 

q(r) = figf(r)l((r,x)dr, r > b (2.11) 
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Separating out the smooth part of the kernel K(r, n) in (2.11) in the form of (1.7), using 
formulae (2.5) and (2.7) and integrating by parts, we finally obtain 

K = 2Gcpfb) 
’ &l-v)& 

(2.12) 

where g(t) is the solution of Eq. (2.8). 
In order to carry out an actual calculation, we introduce the following dimensionless 

quantities 

r’ = 1: 
b’ 

.x’=t, p’=pb, fr(xr)=y, q’(r’)=T, K;=-& andsoon (2.13) 

The results of calculations of the quantity K;lq using (2.12) and (2.13) for different values of 
p’ are given below in the case of problem (a) when a = xn 18, v = 0.3, q’(f) = q = const 

I 2 3 4 5 6 7 
3.20 1.28 0.747 0.554 0,519 0.493 0.482 
2.29 0.790 0.478 0.403 0.395 0.387 0.383 
1.37 0.48 1 0.352 0.327 0.325 0.323 0.322 

I wish to thank V. M. Aleksandrov for his interest. 
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